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INTRODUCTION 

Recently there has been growing interest in the study of phenomena arising in 
the collision of solids (metals or rocks) with velocities of the order of several 
hundred m/set. The investigation of oblique collisions, when the moving solid 
impacts at an angle with the contact surface, is of particular interest. The pheno- 
menon of wave-formation occurring in these cases is very amusing and useful 
from the point of view of explosive welding of metals [I]. Periodic waves arc 
observed on the collision surface when the velocity at contact does not exceed the 
sound velocity in the metals. The et&t of wave formation was first described in 
[2]. Experiments have shown that the amplitude and period of the waves are deter- 
mined by the parameters describing the collision [3], [4]. A qualitative explanation 
of the process of wave formation has been attempted [5], [6]. In a recent paper p] 
a quantitative theoretical explanation of the wave formation was described. 
However, this paper is unsatisfactory from our point of view owing to the arbi- 
trariness of the basic hydrodynamical model and the vagueness of the simplifying 
assumptions. The author of [7] pointed out the discrepancy between his theory 
and the experiments of [6] and this discrepancy is conkned by our investigations. 
The purpose of the present paper is to analyze some phenomena essential, in our 
opinion, to the understanding of oblique collision. Postponing the detailed 
investigation of the mechanism of wave formation itself, we shall limit ourselves to 
the analysis of a number of accompanying effects, for instance, the causes of the 
formation of waves, theoretical calculations of long-wave oscillations modulating 
the usual short waves and some other effects. The calculations showed that the 
solution of a corresponding hydrodynamical problem is described satisfactorily 
by a linear acoustical model containing the characteristic length for the wave for- 
mation process. 
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1. STATEMENT OF THE PROBLEM IN THE ACOUSTICAL APPROXIMATION 

The process of oblique collision of plates can be considered in the following way. 
The flow will be assumed steady for sufficiently long plates, in a coordinate system 
with its origin at the point of contact. Let us assume that there is no vertical 
velocity at large distances from the origin (Fig. 1). Here yl and y2 are the angles of 

FIGURE I 

inclination of the plates to the x axis, U is the velocity of contact, h1 and h, are the 
thicknesses of the plates, VI and V, are the velocities of the plates, and y = J+ + yz 
is the angle of collision. The velocities are connected by the relations: 

I Vl I/sin yl = ( V, I/sin yz = U. (1) 

We shall consider the most important case of small angles 3/I and yz , i.e., 
I V1 I/U < 1; ( V, l/U < 1. In this limiting case, the absence of a vertical velocity 
behind the point of contact corresponds to 

P&l I Vl I = P2h2 I v2 I (2) 

since higher order terms can be neglected. Here pl and p2 are the densities of the 
materials in the upper and lower plates, respectively. 

The equations of motion in the acoustic approximation are: 

(3) 

Here II and v are the components of velocity in the x and y direction, p is the 
pressure, p is the density at p = 0, and c is the sound velocity. In accordance with 
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the assumption of steady flow, relative to the origin, we shall determine the solution 
of Eq. (3) in the form: 

u= u+lQx+ Ut,y) 

u = u’(x + ut, y) (4) 

p = P’(X + w  Y>. 

We shall assume that: 

u < c. (5) 

In the coordinate system x’, y’ which moves with the point of contact, Eq. (3) is 
transformed to 

The primes will be omitted henceforth. 
From the first equation of (6): 

u = - (PlPU) + P(Y)- (7) 

Since it is possible to assume that u = 0, p = 0 at a large distance to the left of the 
point of contact, we can put p(y) = 0 in Eq. (7). However, it is necessary to take 
into account the fact that p(y) f 0 on the right side of the point of contact, if the 
effects of dissipation, causing vorticity formation, are to be included. This is 
impossible to do within the limits of our model. In fact, we obtain from the first 
two equations of (6), after differentiation and subtraction: 

a au a0 ----= 
( ax ay ax ) 

o or au au o ---=. ay ax 

Since the flow is irrotational on the left side of the point of contact, it is easy to 
obtain from Eq. (7): +/ay = au/+ - &/ax = 0; and therefore TV = const. every- 
where in the flow, i.e., TV = 0 everywhere. Therefore, the pressure from Eq. (7) is 

p = -puu. (8) 
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Eliminating p from Eqs. (6) results, after transformation, in 

Eq. (9) shows that the functionf(z), determined by, 

is an analytical function in the flow region. To determinef(z), boundary conditions 
must be imposed. If the two colliding plates have different densities, the values of 

f(z) and z differ for each plate. 

2. SOLUTION FOR IDENTICAL DBNSITIES 

Let p1 = fe = p. and co be the sound velocity of the colhding plates. The point 
of contact is at the origin. The equation for the boundary of the upper plate is 

Imz= 
21 

1+ 

and, correspondingly, for the lower plate: 

Imz= - 
4 

1 -$h%. 

Assuming the plates to be attached after collisionf(z) is analytic everywhere in the 
region 

except at the origin. 
The cut along x < 0, y = 0 corresponds to the free edge of the plates. p = 0 on 

the free boundaries including the cut. From Eq. (8) we have u = 0 together with 
p = 0. 
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The situation in the physical plane is shown in Fig. 2. The conditions at id&y 
are: 

24= 0 as X--+&-Go 

U= 0 as X-+fOo 

u+- I VII for y>o x--t--m 

U-tI w for y<o x4-m. 
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The comparison of this model with the results of computation described below 
suggests the additional conditions forf(z): 

const 
f(z) - 7 

in the vicinity of z = 0. 
It is easy to verify that all conditions will be met fort(z) determined by 

f(z) = iB/S, ImS 20. (11) 

Here S and B are defined by the relations: 

z= 
1/l - tP/cos 

?r lhl In (1 + f-) + h% ln (1 - :)I 

hl I h I hs I Ve I 
B = 1/l - TJ~/c,” = 1/l - V/co8 

(12) 

If p1 = pe = p,, , it follows from Eq. (2) that hl I VI I = hz I V, I and from Eq. (1) 
that 

2hh, . Y 
-  mh,  sm -z l 

(13) 

It is easy to check that the asymptotic form off(z) from (1 l), (12), and (13) is deter- 
mined by: 

U sin y/2 
f(z) - q1 - ua/c,2 

2hlhz 
?T(hl+hd & 

(14) 

It is possible to determine the radius of curvature of the free surface in the vicinity 
of the origin. It is the natural parameter, with the dimensions of length, which 
should be characteristic of the processes occurring in the neighborhood of the free 
boundary after collision, in spite of the act that our model is invalid near the point 
of contact. 

The following equation gives the displacement of the free boundary: 

a8 A as 
at=v=l/ut-x Or ’ a(x - ut) = d&T* (15) 

Here x is the fixed coordinate, and A is a constant. Integrating Eq. (15) we have, 
since6=Oatx=O: 

6=2AIU4lUt--x~ 
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or in coordinates fixed at the point of contact: 

Therefore 6(x) is a parabola with the radius of curvature 

R = 2A=/U2. 

Substituting A we obtain a formula for R: 

2 
R=; 

u2 2hhz *rY l--.hX~m 2. (16) 

Ash2+co: 

R = 219~ 2/l - U2/c2 * 2h, sin2 y/2. 

The structure of this formula may be compared with the empirical relation deter- 
mining the period of the waves in explosive welding [l]: 

X = 26hl sin2 y/2. 

The fact that the relations between R and y, and X and y, are identical, suggests the 
development of wave formation in the vicinity of the point of contact with R as a 
characteristic length. The verification of the dependence of A on U in the form of 

is experimentally difficult at present. 
From Eqs. (1 l), (12), (8) the pressure can be calculated. If we know the velocity 

U from experiment, and the size of the pressure zone of interest is fixed, we can 
calculate the minimum pressure and estimate the time of its action in this zone. 
This theory is unable to estimate the maximum pressure because the corresponding 
value of t becomes infinite, but it it is possible to estimate the pressures in the 
layers of width greater than order of R. The isobar corresponding to the pressure 
p,, is determined by: 

x = 2/l - u2/c()2 
?r lhln~(l +e)8+&+h21nd(1 -%)“+--&I 

“Z$ I h, arctg --&- 
1 

+ h, arc& & + (Ml + k& ~1 (18) 

u = f  dg(c - lg. 
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Here c and 5 are determined by 

2hlha sin y/2 
hl + h, 

kl and ks are integers which are selected in such a way that the coordinate y is con- 
tinuous. Isobars are shown in Fig. 2a, for c&J = 2. 

3. VALIDITY OF THE LINEAR MODEL 

The collision may be considered as the flow of an incompressible fluid in the 
case of U << c. The solution of the problem of the collision of jets is known [8]. The 
general features of the collision of two incompressible jets are shown in Fig. 3. Let 
hl and hs be the widths of the colliding jets at infinity, hs and ho are the widths of 
the jets after merging, U is the velocity at infinity, 0~~ , (Ye , 0~~ , olq are the asymptotic 
angles of the jets with the x axis. The transformation of the hodograph plane into 
a physical one is: 

z=-$ln(l-*)+-$ln(l-+-)-$ln(l-+-) 

- 
( 

ln 5 jL+$++)T 
1 2 3 4 

--$ln(l -+) (19) 

FhlRE 3 
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It is easy to obtain the following relations from the laws of conservation of mass 
and impulse 

h, + h, - h2 - h* = 0 

$++.++0. 
1 2 2 4 

(20) 

When the angle of collision is small, i.e., u, - 0, ‘y1 - 0, ar, - 0, b - 0 the 
situation in the hodograph plane is shown in Fig. 4. Near f = 1 it is possible to 
put f = I + c, where 5’ is small. 

FMXJRE 4 

We shall get by transformation of Eq. (19): 

From Eq. (20) it is possible to prove that the expression in the square bracket is 
small. We have from our previous definition y1 = -CQ , v - iv = U[ y2 = 0~~ , 
sothat 

z = L Q ln 

I ( 

1 - ’ “’ I5 

T 
-&) +h,ln(1 -=)I. 

When yl and ‘yz are small, using Eqs. (1) and (2), it is easy to get the expressions of 
Eqs. (11) and (12) for incompressible flow. This is the sought after result, the acous- 
tical approximation is the asymptotic solution for the problem of collision of 
incompressible jets at small angles of collision. 
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4. THE CASE OF DIFFERENT DENSITIES 

Let two jets of incompressible fluid with different densities p1 and pa, collide 
with velocities U, and U, (Fig. 3). We have the condition at the contact boundary 
that 

(21) 

We shall introduce the variable 5: 

5 = d/p (24 - iv), 

where p = {pl, pa}, respectively, for the two zones of flow. The conditions of 
Eq. (21) mean that [(z) is an analytic function in the region of flow (z = x + iv). 

We shall introduce the potential 4 and the stream function #: 

Evidently function @j(z) = 4 + ia+G is an analytic function in the flow region except 
at the contact boundary. However, dcpldz = fi(u - iv) = 5(z) is analytic from 
Eq. (21) in the whole region of flow, and it follows that Q(l) is analytic in the hodo- 
graph plane. 

Now we can find z(C) by standard methods: 

z= s q? 
Furthermore it is possible to get expressions similar to Eqs. (11) and (12) from the 
transformation of z(5) at small angles of collision: 

O<yth, 

-h, < y < 0. 

Here it is necessary to assume that h, 1 VI 1 p1 = h, 1 V, 1 pz . The velocities are 
determined by the relations: 

u - iv = U, + u’ - iv’ at O<y<h, 
u - iv = U, + u’ - iv’ at -hB < y < 0. 
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These formulae mean that it is possible to determine each jet separately by con- 
sidering their interaction with a rigid wall. 

It is convenient to introduce, following a similar procedure in Section 2: 

A, 1 v1 1 = @2p2 
Plhl + P2h2 

2 sin $ - U, 

h, 1 v, 1 = h1h2P2 
Plh + P2h2 

2 sin -$ - U, . 

The radius of curvatures of the free boundaries for the upper and lower plates are 
determined by: 

4 Rl = - sin2 r - hh2h + h2> 

?r 2 hhl + P2h212 p22 
(22) 

4 R2 = - sin2 1 - hh,uh + h3 

IT 2 wh + P2h212 p12s 

In this case we obtain stable, asymmetric waves as in experiments with plates of 
different density (Fig. 5). Possibly, this experimental fact can be quantitatively 
explained by the asymmetry in the expressions of Eq. (22). 
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5. CALCULATIONS 

We computed the problem of the collision of two plates with the program which 
solves two-dimensional equations of steady gas dynamics (Fig. 6). The upper plate 
was assumed to be copper (pi = 8.93 g/sm2, c, = 3.97 km/se@, the lower to be 
iron co2 = 7.87 sm3, c2 = 5.0 km/se@. The angle of collision was assumed to be 
y = lo”, the velocity W, to be 0.5 km/set, and the size h to be 20 cm. The implicit 
scheme was used in a moving net connected with the moving boundaries of the 
plates. The Courant criterion determines the time step to be of order 4 x 10-8, 
therefore, the implicit characteristic of our scheme was not essential in this case. 

Gh - l 

+ =n 

FIOURB 6 

The net was uniform at the beginning of the process, 60 points in the horizontal 
direction, 15 points in the vertical one. The time-step was equal to 0.2 x 1V 
-0.4 x IO4 sec. The velocity of contact was 2.86 km/set (subsonic). The distri- 
bution of the pressure at values of xl < x$ < x, , yl < ys < yl was plotted for 
52 steps. The coordinate of the point of contact for this time was G (Figs. 7-12). 
Calculation of the pressure from linear acoustics was carried out. The results are 
shown in Figs. 7-12. 

Some new effects were revealed after the calculations. 

(1) It is possible to observe very long and shallow waves (Fig. 13). The 
period of the waves exceeds many times the period of the wave determined by 
Eq. (17). Simultaneously, a wave of the same type was observed in experiments as 
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CdLCULATlONS 

ACOUSTIC APPROXIMATION 

Y’Y3 

t =I&9 

5.0 

X 
0 a 

I 20 30 N(NUMBER OF 
TILE POfN T)  

Frcime 9 

b ~PRESSURE~ 
- CALCULATIONS 

- -- ACOUSTIC APPROXlMATlON 
10.0 

Y=Y+ 
tr16.4 

FIGURE 10 



HYDRODYNAMIC EFFECTS 531 

’ P (PRESSURE) 
- CALCULATtONS 

km 
---ACOUSTIC APPROXlMATlOhl 

Y’Y5 

t = 16.4 

5.0 

0 x 
I 10 20 30 NINUMBER OF 

Tri& POINT) 

FIGURJ!. 11 

’ P (PRESSURE) 

5.0 

- CALCULATIONS 

-- - ACOUSTIC APPROXIMATION 

Y-Y4 

t=14.4 

RGIJRE 12 

modulating the common waves (Fig. 14). The period of these waves is comparable 
with the calculated one. Let us note, that the half-period of the long waves is 
approximately equal to the time interval. This condition is necessary for the rare- 
faction wave reflected from the free boundary of the upper plate to overtake the 
point of contact. 

The method of calculation of this interval is described below. 

(2) The calculations showed the formation of a layer with low velocity near 
the surface of contact (intermediate jet). The parameters of this jet cannot be 
determined correctly owing to the fictitious viscosity of the scheme and the depen- 
dence of these parameters on the number of steps. 
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FIGURE 13 

FIGURE 14 



HYDRODYNAMIC EFFECTS 533 

The calculations were carried out by the program for inviscid fluids. In Figs. 15, 
16, 17, the variations of the horizontal velocity, the entropy and energy over the 
width of the plate are shown. These figures show flow of jet type. 

7.L (UoRfZON~4L VELOCITY) 

FC 

,I 
0 

Fe 

t= 29.0 

FIGURJZ 15 

10 

CU 

t- 24.0 x=xtg; x25 ; x30; x35; 
x38; x4/ i x45; X48 i x51 

FIGURE 16 
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FIGURE 17 

6. MECHANISM OF INITIATION OF WAVES 

The experiments on the wave formation showed that the waves did not appear 
directly behind the point of contact, but at some distance from it. This experimental 
fact permits the assumption that the initiation of waves starts only after the emer- 
gence of the source of oscillations on the colliding surface. It is necessary to assume 
that the rarefaction wave reflected from the free boundary is this source of oscilla- 
tion. This rarefaction wave emerges from the shock wave after collision (Fig. 18). 

FIGURE 18 

Let us assume for simplicity that the shock wave is weak and its velocity is equal 
to the sound velocity. Let the thickness of the upper plate be h (Fig. 18). It is easy 
to calculate the time when the rarefaction wave on the contact surface and the 
point of contact coincide. 
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It is seen from Fig. 19 that 

c,,2t,,2 = Ut,” + 4h2. 

The moment when oscillations begin is determined by 

2h 
t, = 

t co2 - u2 * 

The distance I0 bet ween the beginning of the collision and the point of the emergence 
of the waves is 

(23) 

The experimental verikation of this fomula is difficult enough because of the local 
instability of the emergence of waves. Therefore, special experiments were carried 
out for the verification of the basic assumption on the role of the rarefaction wave. 
The scheme of these experiments is shown in Fig. 20. The experiments show that 
the steady waves emerge immediately behind the ledge if the size of the ledge is of 
the same order as the amplitude of the usual waves. If the ledge is absent, the waves 
appear in a random fashion (Fig. 21). 

The observations suggest the existence of some oscillating mechanism in the 
vicinity of the point of contact, and the period of oscillations is dekrmined only 
by the structure of the solution of the equations in this vicinity. This assumption 
is conhrmed by the fact that the relations between h and R and the parameters of 
the collision coincide (see Eqs. (16) and (17)). 
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FxGuRE 20 

It is interesting to investigate the widih of the ramfaction wave at the moment 
when it overtakes the point of contact. From previous investigations it follows that 
it is natural to expect that the rarefaction wave can be an initiator of waves if its 
width is comparable with the wave length. 

The sound velocity increases behind the shock wave since the material is com- 
pressed. Let c = c, + 6~. Let us assume 6c to be small and represent it in the 
form: 

6c = q(y). (24) 

In this case the situation shown in Fig. 19 will change, depending on the value of 
y (Fig. 22). 

The equations of the characteristic for the undisturbed flow are: 

Correspondingly, for the disturbed flow 

a&at + H(Y, E, #a, Qy) = 0, (26) 

Since E is small we can write 

(27) 
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In our case 

FbJRE 21 

H = --co G5on)” + ($otY - 4Y) l/(5w + <+od2 

ft = --Cl(Y) ~($02 + ($02. 

From the relations on the bicharacteristics 
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FIGURE 22 

Since we are interested in the case of the wave propagating with the velocity c, , 
and since the value of c,(y) is slightly diBerent from the mean value of 
SC/E = c, = const, it is possible to obtain from Eq. (29): 

4. = _ 2 . 3h2 x2 ; y2 . 

Let 8Z be the width of the rarefaction wave. After perturbation with E 

we = wa! . 

From this relation and Eq. (23) we obtain the width of the rarefaction wave at 
y = 2h at the moment of its arrival at the point of contact: 

(31) 

It is possible to express 6[c2] in terms of parameters of the collision. Assuming 
that c&J - 2 for a typical experiment, 

6X 3 COP ‘sin1 -0.86sinz 
- = 8 l/(c&r)~ - 1 h 2 2’ 

Comparing Eq. (32) with Eq. (17) it is easy to see that the relation A/,/s: is changing 
from 1 to 2 at angles of collision between 5” and lo”, which are typical of most 
experiments. 
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